Application of Artificial Intelligence Techniques in Process Fault Diagnosis

نویسندگان

  • M. A. HUSSAIN
  • C. R. CHE HASSAN
  • K. S. LOH
چکیده

Chemical processes are systems that include complicated network of material, energy and process flow. As time passes, the performance of chemical process gradually degrades due to the deterioration of process equipments and components. The early detection and diagnosis of faults in chemical processes is very important both from the viewpoint of plant safety as well as reduced manufacturing costs. The conventional way used in fault detection and diagnosis is through the use of models of the process, which is not easy to be achieved in many cases. In recent years, an artificial intelligence technique such as neural network has been successfully used for pattern recognition and as such it can be suitable for use in fault diagnosis of processes [1]. The application of neural network methods in process fault detection and diagnosis is demonstrated in this work in two case studies using simulated chemical plant systems. Both systems were successfully diagnosed of the faults introduced in them. The neural networks were able to generalise to successfully diagnosed fault combinations it was not explicitly trained upon. Thus, neural network can be fully applied in industries as it has shown several advantages over the conventional way in fault diagnosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Artificial Intelligence Techniques to Fault Diagnosis in Analog Systems

Basic concepts of fault diagnosis in analog and mixed (analog and digital) electronic systems by means of the simulation-before-test approach, the so called dictionary approach, have been presented. Special attention has been paid to application of artificial intelligence tools, such as: artificial neural networks, fuzzy sets and evolutionary computing. Key-Words: Analog electronic fault diagno...

متن کامل

An Overview of the Artificial Intelligence Applications in Identifying and Combating the Covid-19 Pandemic

Intruduction: In late 2019, people around the world became infected with Covid-19 by the outbreak, the pandemy and epidemy of this disease. To this end, researchers in various fields are seeking to find solutions to the problems related to the control and management of crises. The transmission power of the new corona virus has drawn the attention of experts in the use of artificial intelligence...

متن کامل

Intelligent Diagnosis of Rotating Machinery Faults-A Review

(2002) Intelligent diagnosis of rotating machinery faults-A review. The task of condition monitoring and fault diagnosis of rotating machinery faults is both significant and important but is often cumbersome and labour intensive. Automating the procedure of feature extraction, fault detection and identification has the advantage of reducing the reliance on experienced personnel with expert know...

متن کامل

Application of Neural Networks in Power Systems; A Review

The electric power industry is currently undergoing an unprecedented reform. One of the most exciting and potentially profitable recent developments is increasing usage of artificial intelligence techniques. The intention of this paper is to give an overview of using neural network (NN) techniques in power systems. According to the growth rate of NNs application in some power system subjects, t...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007